Several presentations at the European Photovoltaic Conference 2012 in Frankfurt, Germany, including those of Prof. Harry Atwater, illustrate recent breakthroughs in the area of high-efficiency thin film solar cells. One of the most interesting developments is that researchers are beginning to consider materials which have not been used conventionally as a thin film.

Absorber materials of a high efficiency solar cell typically comprise a significant fraction (~50%) of the total cell cost. One simple way to reduce the cell cost is to use less material. Processing solar cells with thin layers can present handling challenges for some of the materials – breakage being one of the primary issues. Nevertheless, thin materials that are flexible can enable versatility in production, such as roll-to-roll processing, and hence can significantly reduce the processing cost.

Alta Device[1] fabricates solar cells using a few micron thick gallium arsenide absorber layer. However, gallium arsenide is extremely expensive to use in large area solar cells, and thin films of this material tend to be fragile and difficult to fabricate. This is where Alta enters with its innovation – being able to make cheap solar modules that are practical for most applications using this material. Inventions by two leading academic researchers in photonic materials, Eli Yablonovitch and Harry Atwater, have been integrated to achieve this goal. Eli Yablonovitch developed and patented a technique for creating ultrathin films of gallium arsenide in the 1980s while working at Bell Communications Research. On the other hand, Harry Atwater worked on microstructures and nanostructures to improve the material’s ability to trap light and convert it into electricity. Amalgamation of these two ideas have resulted in efficiency increases at a more reasonable cost while using this material.

Alta’s cells have converted 28.3 percent of sunlight into electricity, which is the highest single junction one sun conversion efficiency record – in contrast, the highest efficiency for a silicon solar cell is 25 percent and commonly used thin-film solar materials don’t exceed 20 percent. Yablonovitch suggests that Alta in due course has the potential of breaking the 30 percent efficiency mark and nearing the theoretical limit of 33.4 percent for cells of this type.


 Flexible power: Alta’s solar cells can be made into bendable sheets. In this sample, a series of solar cells are encapsulated in a roofing material. Credit: Gabriela Hasbun

Unlike gallium arsenide, silicon is a relatively inexpensive material. Interestingly silicon, which is the second most abundant element in the Earth’s crust ( ~28% by mass) after oxygen[2] , is also the most commonly used material in the PV industry (85%, multi-crystalline and mono-crystalline silicon combined) – a function of its economics and established processing industry. Nonetheless, efforts are on-going to further reduce cell price of silicon. Recently companies such as Silicon Genesis, Twin Creeks and AstroWatt have developed processes to make ultra-thin silicon wafers. Silicon Genesis and Twin Creeks uses Proton Induced Exfoliation (PIE)[3] method to isolate ultra-thin (20 micron thin) silicon wafers. In PIE, high-energy protons (or hydrogen ions) are embedded into “donor” wafers, such as thick wafers of silicon, germanium or other single-crystal materials. The ions form a uniform layer beneath the surface of the donor, as shown in the figure below. The depth of the formed layer depends on the energy of the incoming ions. The physical attributes of hydrogen permit the ions to penetrate the surface of the donor wafer without changing its inherent properties and characteristics.


When heated, the ions then lift or exfoliate a uniform ultra-thin layer, called a lamina, from the donor wafer. The lamina becomes a production wafer and can be processed into thin solar cells or semiconductor devices. To use an analogy, the ions act like a scalpel and carve away thin, identical and functional wafers from the donor. A single donor wafer can be reused repeatedly to create multiple laminae.  These ultra-thin wafers contain only a fraction of the material currently used in a standard wafer for solar cells, LEDs or other devices. Twin Creeks reported a maximum cell efficiency of 11% using their 20 micon thin wafers.

Astrowatt[4] on the other hand uses Semiconductor on Metal (SOM®) kerf-less exfoliation process. A metal layer is deposited on a silicon wafer and then the wafer is subjected to a series of thermal cycles, resulting in residual stresses that exfoliate a thin layer of silicon. Astrowatt recently reported a 15% efficient solar cell using their SOM method.

It is worth noting that there are other solar cell devices that use inherently thin film structures. Examples include copper indium gallium selenide (CIGS) and amorphous silicon (a-Si) solar cells, where maximum cell efficiencies of 19.6% and 10.1% have been reported for CIGS and a-Si solar cells, respectively [5].

Chow3Zahidur R Chowdhury

Electrical and Computer Engineering, University of Toronto.

PhD Candidate (5th Year)



[2] Nave, R. Abundances of the Elements in the Earth’s Crust, Georgia State University

[3] Twin Creeks (

[4] Jawarani et al., ‘Integration and Reliability of Thin Silicon Solar Cells and Modules Fabricated using SOM® Technology’, EU PVSEC 2012, Frankfurt, Germany.

[5] Solar cell efficiency tables (version 40)

[6] Alta Devices (

[7] AstroWatt (